Evaluation of Information System Development and Implementation Trends in the Field of Human Resource Management Using Text Mining Techniques

Document Type : Research Article


1 Professor of IT Management, University of Tehran, Tehran, Iran

2 Assistant Professor of Industrial Management, Allameh Tabataba'i University, Tehran, Iran

3 MSc. Student of IT Management, University of Tehran, Tehran, Iran


Human resource management has seen significant changes since the advent of information systems; also, the vast application of information systems in human resource management is not overlooked, but what information systems in which human resource management areas played a more significant role was an important issue that has not been addressed so far. As a result, the purpose of this paper is to find the relations of words, recognize the most frequent words, and study the trends of information systems in the field of human resource management through text mining approach. Among text analytic methods, word-weighting, word-correlation, text clustering algorithms have been applied to the dataset of high-ranked information system journals and our dataset is obtained from Scopus database between the years of 2013 and 2017; then, this study utilizes text mining algorithm on the titles, abstract and keywords of the papers and tries to find the relations of the words and general trends of information systems in the field of human resource management. The results present practical information which can help students and scholars to understand a useful overview and provide them with the opportunity to focus on new topics of new trends of information systems in the field of human resources. Some results of this paper are the importance of knowledge management and especially knowledge-sharing process, virtual teams, use of human resource information systems, and also the key role of social networks in organizations.


Main Subjects

الف) فارسی
جزنی، نسرین؛ طاهری، نادر و ابیلی، خدایار (1389). «تدوین راهبردهای توسعۀ منابع انسانی با رویکرد توسعۀ دانش کارکنان»، مطالعات مدیریت راهبردی، شمارۀ 2، 15-29.
رابینز، استیفن، پی و دی سنزو، دیوید ای (1998). مبانی مدیریت، ترجمۀ سیدمحمد اعرابی، حمید رفیعی و بهروز اسراری، ارشاد 1379، تهران: انتشارات دفتر پژوهش‌های فرهنگی، 386-390.
رضایی‌نور، جلال و شیخ بهایی، جلال (1396). «کاربردهای داده‌کاوی متنی در حوزة مدیریت دانش زنجیرة خدمات دولت الکترونیکی»، مجلۀ مدیریت فناوری اطلاعات دانشگاه تهران، دورة 9، شمارة 1، 39-66.
سلطانی، م؛ زارع، ح، و پرنیان‌خوی، م. (2015). «بررسی و تحلیل نقش قابلیت‌های فردی منابع انسانی در ایجاد مزیت رقابتی؛ به‌کارگیری مدل VRIO مدیریت فرهنگ سازمانی»، 13(2)، 393-414.
نیکنام، فرزاد و نیک‌نفس، علی‌اکبر (1395). «بهبود روش‌های متن‌کاوی در کاربرد پیش‌بینی بازار با استفاده از الگوریتم‌های انتخاب نمونۀ اولیه»، مجلۀ مدیریت فناوری اطلاعات دانشگاه تهران، دورۀ 8، شمارۀ 2، 415-434.
ب) انگلیسی
Ainin, S., et al. )2015.( Organization’s Performance, Customer Value and the Functional Capabilities of Information Systems, Information Systems Management, 32(1), 2-14.
Bal, Y. & Bozkurt, S. & Ertemsir, E. (2012). "The importance of using human resources information systems (HRIS) and a research on determining the success of HRIS".
Bijalwan, V., et al. (2014). KNN based machine learning approach for text and document mining, International Journal of Database Theory and Application,. 7(1), 61-70.
Boxall, P. & J. Purcell (2011). Strategy and human resource management, Palgrave Macmillan.
Brewster, C. (1995). "Towards a'European'model of human resource management", Journal of international business studies, 1-21.
Callon, M.; J.-P. Courtial & F. Laville (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry, Scientometrics, 22(1), 155-205.
Castellanos, A., C. Parra & M. Tremblay (2015). Corporate Social Responsibility Reports: Understanding Topics via Text Mining.
Clark, L. (2007). Retailers lead rise in IT spending growth, Computer Weekly, 5.
Hall, M. L. & S. Moritz (2003). "The impact of e-HR on the human resource management function", Journal of Labor Research, 24 (3), 365-379.
Hays, S. W. & Kearney, R. C. (2001). "Anticipated changes in human resource management: Views from the field", Public Administration Review, 61(5), 585-597.
Kim, H. & J.Y. Lee (2008). "Exploring the emerging intellectual structure of archival studies using text mining: 2001—2004", Journal of Information Science, 34(3), 356-369.
Kim, J.; Han, M.; Lee, Y. & Park, Y. (2016). "Futuristic data-driven scenario building: incorporating text mining and fuzzy association rule mining into fuzzy cognitive map", Expert Systems with Applications, 57, 311-323.
Lee, S., et al. (2008). Using patent information for designing new product and technology: keyword based technology roadmapping, R&d Management, 38(2), 169-188.
Miner, G., J; Elder IV & T. Hill (2012). Practical text mining and statistical analysis for non-structured text data applications, Academic Press.
Montoya, O.L.Q., et al. (2015). "Information retrieval on documents methodology based on entropy filtering methodologies", International Journal of Business Intelligence and Data Mining, 10(3), 280-296.
Nasirin, S. , N. Winter, & P. Coppock (2005). Factors Influencing User Involvement DSS Project Implementation: Some Lessons from the United Kingdom Health Sector. in ECIS.
Nikhil, R., et. al.) 2015.( "A survey on text mining and sentiment analysis for unstructured web data", in Journal of Emerging Technologies and Innovative Research, JETIR.
Pynes, J. E. (2008). Human resources management for public and nonprofit organizations: A strategic approach (Vol. 30): John Wiley & Sons.
Rip, A. & J. Courtial (1984). Co-word maps of biotechnology: An example of cognitive scientometrics, Scientometrics, 6(6), 381-400.
Storey, J. & K. Sisson ( 1993). Managing human resources and industrial relations, Open University Press.
Turban, E.; R.K. Rainer & R.E. Potter (2007). Introduction to Information Systems: Supporting and Transforming Business, John Wiley & Sons, Inc.
Ur-Rahman, N. & J.A. Harding (2012). Textual data mining for industrial knowledge management and text classification: A business oriented approach, Expert Systems with Applications, 39(5), 4729-4739.
Wang, X., Q. Cheng & W. Lu (2014). Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks, Scientometrics, 101(2), 1253-1271.
Wright, P.M. & T.M. Gardner (2000). Theoretical and empirical challenges in studying: the HR practice-firm performance relationship.
Yang, Y.-H., H. Bhikshu & R.-H. Tsaih (2011). The topic analysis of hospice care research using co-word analysis and GHSOM, Intelligent Computing and Information Science, 459-465.